

MICROCIRCUIT DATA SHEET

Original Creation Date: 06/20/95 Last Update Date: 09/12/02 Last Major Revision Date: 09/05/02

MONOLITHIC JFET INPUT OPERATIONAL AMPLIFIERS

General Description

MNLF157-X REV 1A1

These are the first monolithic JFET input operational amplifiers to incorporate well matched, high voltage JFETs on the same chip with standard bipolar transistors (BI-FET(TM) Technology). These amplifiers feature low input bias and offset currents/low offset voltage and offset voltage drift, coupled with offset adjust which does not degrade drift or common-mode rejection. The devices are also designed for high slew rate, wide bandwidth, extremely fast settling time, low voltage and current noise and a low 1/f noise corner.

Industry Part Number

NS Part Numbers

LF157

LF157H/883

Prime Die

LF157

Processing	Subgrp Description Temp (°C)
MIL-STD-883, Method 5004	Static tests at +25 2 Static tests at +125 3 Static tests at -55 4 Dynamic tests at +25
Quality Conformance Inspection	4 Dynamic tests at +25 5 Dynamic tests at +125 6 Dynamic tests at -55
MIL-STD-883, Method 5005	7 Functional tests at +25 8A Functional tests at +125 8B Functional tests at -55 9 Switching tests at +25 10 Switching tests at +125 11 Switching tests at -55
	ELECTRONIC

Features

- Low input bias current
- Low input offset current
- High input impedance
- Low input offset voltage
- Low input offset voltage temp. drift
- Low input noise current
- High common-mode rejection ratio
- Large dc voltage gain
- Extremely fast settling time to 0.01%
- Fast slew rate
- Wide gain bandwidth
- Low input noise voltage

30 pA
3 pA
10e12 Ohms
1 mV
3 uV/ C
0.01 pA/sqrtHz
100 dB
106 dB
1.5 uS
50 V/uS
20 MHz
12 nV/sqrtHz

(Absolute Maximum Ratings)

Supply Voltage	+22V
Differential Input Voltage	
Input Voltage Range	<u>+</u> 40V
(Note 4)	+20V
Output Short Circuit Duration	±20V
	Continuous
Tjmax	150 C
Power Dissipation at Ta=25 C (Still Air)	560mW
(Note 2, 3) (500 LF/Min Air Flow)	1200mW
Thermal Resistance ThetaJA	
(Still Air) (500LF/Min Air flow)	162 C/W 89 C/W
ThetaJC	32 C/W
Storage Temperature Range	32 C/W
poorage ramperature name	-6 <mark>5 C ≤ Ta ≤</mark> +150 C
Lead Temperature (Soldering, 10 seconds)	300 C
ESD tolerance (Note 5)	
(11000 0)	1200V

- Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics. Some performance characteristics may degrade when the device is not operated under the listed test conditions.
- The maximum power dissipation must be derated at elevated temperatures and is Note 2: dictated by Tjmax (maximum junction temperature), ThetaJA (package junction to ambient thermal resistance), and TA (ambient temperature). The maximum allowable power dissipation at any temperature is Pdmax = (Tjmax - TA)/ThetaJA or the number given in the Absolute Maximum Ratings, whichever is lower.

 Maximum Power Dissipation is deined by the package characteristics. Operating the
- Note 3: part near the Maximum Power Dissipation may cause the part to operate outside guaranteed limits.
- Note 4: Unless otherwise specified the absolute maximum negative input voltage is equal to
- the negative power supply voltage.

 Human body model, 100pF discharged through 1.5k Ohms. Note 5:

ELECTRONI

Electrical Characteristics

DC PARAMETERS

(The following conditions apply to all the following parameters, unless otherwise specified.) DC: Vcc = ± 15 V, Vcm = 0V, Rs = 50 Ohms

SYMBOL	PARAMETER	CONDITIONS	NOTES	PIN- NAME	MIN	MAX	UNIT	SUB- GROUPS
Vio	Input Offset Voltage				-5	5	mV	1
					-7	7	mV	2, 3
		Vcc = ±20V			-5	5	mV	1
					-7	7	mV	2, 3
Iio	Input Offset Current				-0.02	0.02	nA	1
					-20	20	nA	2, 3
		Vcm = 11V			-0.02	0.02	nA	1
					-20	20	nA	2, 3
		Vcm = -11V			-0.02	0.02	nA	1
					-20	20	nA	2, 3
		$Vcc = \pm 20V$			-0.02	0.02	nA	1
					-20	20	nA	2, 3
Ibias	Input Bias Current					0.1	nA	1
						50	nA	2, 3
		Vcm = 11V				0.1	nA	1
						50	nA	2, 3
		Vcm = -11V				0.1	nA	1
						50	nA	2, 3
		Vcc = ±20V				0.1	nA	1
						50	nA	2, 3
PSRR	Power Supply Rejection Ratio	$Vcc = \pm 20V \text{ to } \pm 10V$			85		dB	1, 2,
CMRR	Common Mode Rejection Ratio	Vcm = ±11V	CT	B	85	110	dВ	1, 2,
+Vio/Adj	Input Offset Voltage Adjust		_		10		mV	1, 2,
-Vio/Adj	Input Offset Voltage Adjust					-10	mV	1, 2,
Icc	Power Supply Current					7	mA	1
	Carrenc					9	mA	2, 3
		Vcc = ±20V				9	mA	1
+Ios	Short Circuit Current	Vout = 0V			-35	-15	mA	1

published by WWW.\$KYTECH.IR

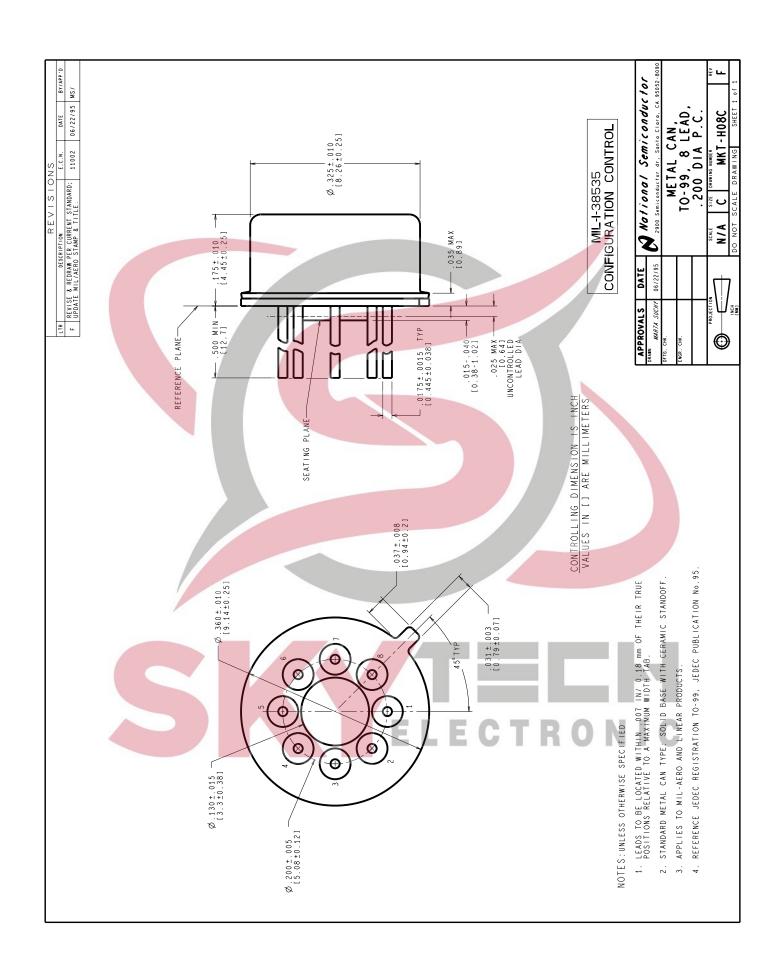
Electrical Characteristics

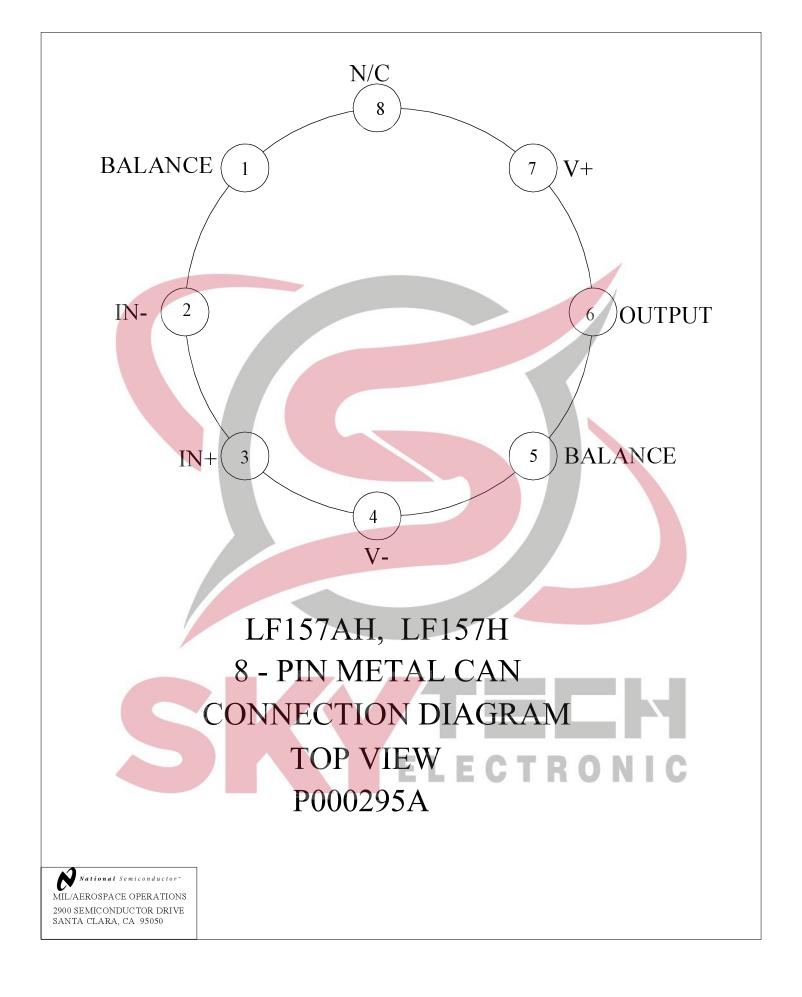
DC PARAMETERS (Continued)

(The following conditions apply to all the following parameters, unless otherwise specified.) DC: $Vcc = \pm 15V$, Vcm = 0V, Rs = 50 Ohms

SYMBOL	SYMBOL PARAMETER CONDITIONS		NOTES	PIN- NAME	MIN	MAX	UNIT	SUB- GROUPS
-Ios	Short Circuit Current	Vout = 0V			15	35	mA	1
+Vop	Output Voltage Swing	Rl 10K Ohms			12		V	4, 5, 6
		R1 2K Ohms		47	10		V	4, 5, 6
-Vop	Output Voltage Swing	Rl 10K Ohms				-12	V	4, 5, 6
		Rl 2K Ohms				-10	v	4, 5, 6
+Avs	Large Signal Voltage Gain	Rl = 2K Ohms, Vout = 0 to 10V			50		V/mV	4
	vorcage dam				25		V/mV	5, 6
-Avs	Large Signal Voltage Gain	Rl = 2K Ohms, Vout = 0 to -10V			50		V/mV	4
	vortage dain				25		V/mV	5, 6

AC PARAMETERS


(The following conditions apply to all the following parameters, unless otherwise specified.) AC: $Vcc = \pm 15V$, Vcm = 0V, Rs = 50 Ohms


+Sr	Slew Rate	Av = 5, Rload = 2K Ohms, Cload = 100pfd, Vin = -1V to +1V, Vout = -5V to +5V	30	V/uS 9
-Sr	Slew Rate Av = 5, Rload = 2K Ohms, Cload = 100pfd, Vin = +1V to -1V Vout = +5V to -5V		30	V/uS 9
Gbw	Gain Bandwidth		15	MHz 9

Graphics and Diagrams

GRAPHICS#	E L DESCRIPTION R O N C
05094HRB3	METAL CAN (H), TO-99, 8LD .200 DIA P.C. (B/I CKT)
H08CRF	METAL CAN (H), TO-99, 8LD, .200 DIA P.C. (P/P DWG)
P000295A	METAL CAN (H), 8 LEAD (PINOUT)

See attached graphics following this page.

Revision History

Rev	ECN #	Rel Date	Originator	Changes
1A1	M0004064	09/12/02		Update MDS to fully Released datasheet: MNLF157-X, Rev. 0BL to MNLF157-X, Rev. 1A1. Changed AC Parameters Section, +SR Condition From: Av = 5, Vin = -5V to +5V TO: Av = 5, Rload = 2K Ohms, Cload = 100pfd, Vin = -1V to +1V, Vout = -5V to +5V and -SR Condition From: Av =
				5, Vin = +5V to -5V TO: Av = 5, Rload = 2K Ohms, Cload = 100pfd, Vin = +1V to -1V, Vout = +5V to -5V. Condition Changed to match Test Tape.

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.

National Semiconductor was acquired by Texas Instruments.

http://www.ti.com/corp/docs/investor_relations/pr_09_23_2011_national_semiconductor.html

This file is the datasheet for the following electronic components:

LF157H/883 - http://www.ti.com/product/lf157h/883?HQS=TI-null-null-dscatalog-df-pf-null-wwe

published by WWW.\$KYTECH.IR